
Diffusion Models

Patrick Yin

July 2, 2024

1 Credits

These notes were written by parsing the papers in the references as well as the
following two blogs:

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

• https://yang-song.net/blog/2021/score/

2 What are Diffusion Models?

Diffusion models are a form of generative model which circumvents issues other
generative models face such as GANs, VAEs, and Flow-based models (although
they come along with their own isssues). They show impressive performance
in image generation, in-painting, and manipulation. They’ve also recently been
gaining traction in robotics, where diffusion models been used as a richer policy
class which claims better performance than prior methods.

3 Forward Diffusion Process

The diffusion process is a markov chain, where the next timestep only depends
on the previous timestep. Given x0 ∼ q(x), we define the forward diffusion
process as adding Gaussian noise to the sample in T steps to produce x1, ..., xT

controlled by variance schedule {βt ∈ (0, 1)}Tt=1:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

When T → ∞, xT is equivalent to an isotropic Gaussian distribution.

1

4 Reverse Diffusion Process

4.1 Derivation of Training Objective

If we can reverse the forward process and sample from q(xt−1|xt), we can recre-
ate the true sample from Gaussian noise. In the limit of infinitesimal step sizes,
the true reverse process will have the same functional form as the forward pro-
cess [Fel49]. As a result, with βt << 1, q(xt−1|xt) will also be Gaussian. We
learn a model pθ to approximate this posterior:

pθ(xt−1|xt) = N (xt−1;µµµθ(xt, t),ΣΣΣθ(xt, t))

Note that the reverse process is also a markov chain, so

pθ(x0:T) = p(xT)
T∏

t=1

pθ(xt−1|xt)

We would like to maximize pθ(x0) =
∫
pθ(x0:T) dx1:T , but this intractable since

it requires us to marginalize over all the ways we could have arrived at x0 starting
from a noise sample. Instead, let’s view pθ as a latent variable model where x0

is our observed variable and x1:T is our latent variables. We can estimate pθ(x0)
with a variational lower bound:

− log pθ(x0) ≤ −Eq[log pθ(x0|x1:T)] +DKL(q(x1:T |x0)∥pθ(x1:T))

= Eq[log
q(x1:T |x0)

pθ(x0:T)
] = LV LB

We can further decompose the objective into

LV LB = Eq[log
q(x1:T |x0)

pθ(x0:T)
]

= Eq[− log pθ(xT) +

T∑
t=1

log
q(xt|xt−1)

pθ(xt−1|xt)
]

= Eq[DKL(q(xT |x0)∥pθ(xT)) +

T∑
t=2

DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))− log pθ(x0|x1)]

= LT +

T∑
t=2

Lt−1 + L0

by applying Bayes’ rule and additionally conditioning on x0. We want to condi-
tion on x0 because the reverse conditional probability q(xt−1|xt, x0) is Gaussian
when conditioned on known x0. As a result, the two terms in KL divergence
in Lt are both Gaussians, so we can evaluate it in a Rao-Blackwellized fashion
with closed form expressions instead of high variance Monte Carlo estimates.

Since q(xT |x0) and pθ(xT) are fixed, LT is constant and can be ignored during
training. In DDPM [HJA20], the authors use a separate discrete decoder for L0

derived from N (x0;µµµθ(x1, 1),ΣΣΣθ(x1, 1)).

2

4.2 Reparameterization and Simplification of Objective

In DDPM [HJA20], the authors elect to fix ΣΣΣθ(xt, t) to time-specific constants
σt due to better empirical performance and training stability. They also elect
to reparameterize the loss function in terms of that noise that was added and
try to learn the noise rather than µµµθ(xt, t). More specifically, let αt = 1 − βt,
ᾱt =

∏t
i=1 αi, and ϵ ∼ N (0, I). Recall that

xt =
√
αtxt−1 +

√
1− αtϵ

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

= ...

=
√
ᾱtx0 +

√
1− ᾱtϵ

so q(xt|x0) = N (xt;
√
ᾱtx0, (1−ᾱt)I). Note that conditioned on x0, q(xt−1|xt, x0) =

N (xt−1; µ̃(xt, x0), β̃tI). We want to find a closed form expression for µ̃ since
that would be the target our network would regress to if we were optimizing for
µµµθ(xt, t). By Bayes’ rule, we have:

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)

q(xt|x0)

∝ exp
(
− 1

2

((xt −
√
αtxt−1)

2

βt
+

(xt−1 −
√
ᾱt−1x0)

2

1− ᾱt−1
− (xt −

√
ᾱtx0)

2

1− ᾱt

))
= exp

(
− 1

2

((αt

βt
+

1

1− ᾱt−1

)
x2
t−1 −

(2√αt

βt
xt +

2
√
ᾱt−1

1− ᾱt−1
x0

)
xt−1 +C(xt, x0)

))
where C(xt, x0) is some function that doesn’t involve xt−1. Therefore, we can
derive the mean and variance of the Gaussian to be:

β̃t = 1/(
αt

βt
+

1

1− ᾱt−1
) =

1− ᾱt−1

1− ᾱ)t
· βt

µ̃(xt, x0) =
(2√αt

βt
xt +

2
√
ᾱt−1

1− ᾱt−1
x0

)
/
(
− 2 ·

(αt

βt
+

1

1− ᾱt−1

))
=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

Because x0 = 1√
ᾱt
(xt −

√
1− ᾱtϵ), we can plug it in to obtain:

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt

1√
ᾱt

(xt −
√
1− ᾱtϵ)

=
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵ)

We have successfully parameterized µµµθ(xt, t) in terms of ϵϵϵθ(xt, t):

µµµθ(xt, t) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵϵϵθ(xt, t))

3

Since ΣΣΣθ(xt, t) is fixed, the KL-divergence between the two Gaussians is simpli-
fied down to

Lt = Ex0,ϵ

[1

2∥ΣΣΣθ(xt, t)∥22
∥µ̃̃µ̃µ(xt, x0)−µµµθ(xt, t)∥2

]
= Ex0,ϵ

[1

2∥ΣΣΣθ(xt, t)∥22
∥ 1
√
αt

(xt −
1− αt√
1− ᾱt

ϵt)−
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵϵϵθ(xt, t))∥2
]

= Ex0,ϵ

[(1− αt)
2

2αt(1− ᾱt)∥ΣΣΣθ(xt, t)∥22
∥ϵt − ϵϵϵθ(xt, t)∥2

]
In DDPM [HJA20], the authors found that empirically the diffusion models
works better without the weighting term:

Lt = Et∼[1,T],x0,ϵt

[
∥ϵt − ϵϵϵθ(xt, t)∥2

]
= Et∼[1,T],x0,ϵt

[
∥ϵt − ϵϵϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
To sample xt−1 ∼ pθ(xt−1|xt), we can compute xt−1 = µµµθ(xt, t) + σtzzz =
1√
αt
(xt − 1−αt√

1−ᾱt
ϵϵϵθ(xt, t)) + σtzzz where zzz ∼ N (0, 1). This results in two very

simple algorithms for training and sampling from the diffusion model:

Algorithm 1 Training

1: loop
2: x0 ∼ q(x0)
3: t ∼ Uniform(1, ..., T)
4: ϵ ∼ N (0, I)
5: Take gradient descent step on ∇θ∥ϵϵϵ− ϵϵϵ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

6: end loop

Algorithm 2 Sampling

1: xT ∼ N (0, 1)
2: for t = T, ..., 1 do
3: zzz ∼ N (0, I) if t > 1, else zzz = 0
4: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
ϵϵϵ(xt, t)) + σtzzz

5: end for
6: return x0s

5 Connection to Score Matching Models

Langevin dynamics provides an MCMC procedure to sample from a distribution
q(x) using only ∇x log q(x):

xt = xt−1 +
δ

2
∇x log q(xt−1) +

√
δϵt

4

where ϵt ∼ N (0, I). As T → ∞, ϵ → 0, xT equals the true probability den-
sity q(x). We can estimate ∇x log q(x) by learning a score network sθ(x) ≈
∇x log q(x) estimated with score matching [SE19].

However, in regions where data density is low, score estimation is less reliable.
As a result, the authors of [SE19] perturb the data with noise of different levels
and train a noise-conditioned score network to jointly estimate the scores of the
perturbed data at the different noise levels. The schedule of increasing noise
resembles the forward diffusion process, and it turns out that sssθ is equivalent
to ϵϵϵθ under some scaling factor:

sssθ(xt, t) ≈ ∇xt
log q(xt) = Eq(x0)[∇xt

q(xt|x0)] = Eq(x0)

[
− ϵϵϵ(xt, t)√

1− ᾱt

]
= − ϵϵϵ(xt, t)√

1− ᾱt

since q(xt|x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I) and given some Gaussian x ∼ N (µ, σ2I),

∇x log p(x) = ∇x

(
− 1

2σ2 (x− µ)2
)
= − ϵ

σ where ϵ ∼ N (0, I).

6 Diffusion Policy

Diffusion policy [Chi+23] proposes using diffusion models as the policy class for
robot imitation learning and claims benefits of multimodal action distributions,
suitability to high-dimensional action spaces, and training stability. They take
DDPM and make two major changes:

• Changing output x from images to closed-loop action-sequence prediction,
allowing for receding horizon control during inference time

• Conditioning ϵθ additionally on input observation Ot, enabling end-to-end
training of the vision encoder.

7 Quick Summary

Pros: Diffusion models can be analytically evaluated and cheaply fit data while
fitting arbitrary structures in data.

Cons: Diffusion models rely on a long Markov chain of diffusion steps for sample
generation, making sampling slower than GANs.

8 Things I didn’t cover

• Classifier guided diffusion [DN21]

• Classifier-free diffusion guidance [HS22]

• Variational lower bound on log-likelihood [Kin+21]

• Log-likelihood approximation via probability flow ODEs [Son+20]

5

References
[Fel49] William Feller. “On the Theory of Stochastic Processes, with Par-

ticular Reference to Applications”. In: 1949. url: https://api.
semanticscholar.org/CorpusID:121027442.

[SE19] Yang Song and Stefano Ermon. “Generative modeling by estimating
gradients of the data distribution”. In: Advances in neural informa-
tion processing systems 32 (2019).

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion
probabilistic models”. In: Advances in neural information processing
systems 33 (2020), pp. 6840–6851.

[Son+20] Yang Song et al. “Score-based generative modeling through stochas-
tic differential equations”. In: arXiv preprint arXiv:2011.13456 (2020).

[DN21] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat
gans on image synthesis”. In: Advances in neural information pro-
cessing systems 34 (2021), pp. 8780–8794.

[Kin+21] Diederik Kingma et al. “Variational diffusion models”. In: Advances
in neural information processing systems 34 (2021), pp. 21696–21707.

[HS22] Jonathan Ho and Tim Salimans. “Classifier-free diffusion guidance”.
In: arXiv preprint arXiv:2207.12598 (2022).

[Chi+23] Cheng Chi et al. “Diffusion policy: Visuomotor policy learning via
action diffusion”. In: arXiv preprint arXiv:2303.04137 (2023).

6

https://api.semanticscholar.org/CorpusID:121027442
https://api.semanticscholar.org/CorpusID:121027442

	Credits
	What are Diffusion Models?
	Forward Diffusion Process
	Reverse Diffusion Process
	Derivation of Training Objective
	Reparameterization and Simplification of Objective

	Connection to Score Matching Models
	Diffusion Policy
	Quick Summary
	Things I didn't cover

